
On the shape dependence of the translational partition function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 4313

(http://iopscience.iop.org/0305-4470/23/19/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 4313-4320. Printed in the UK 

On the shape dependence of the translational partition 
function 

G Taubmann 
Department of Theoretical Chemistry, University of Ulm, Oberer Eselsberg, D-7900 
Ulm, Federal Republic of Germany 

Received 31 October 1989, in final form 30 April 1990 

Abstract. The partition functions q of a particle moving in some two- and three 
dimensional potentials with infinite barrier height were examined in order to inves 
tigate the iduence of shape on the translational partition function. The partition 
functions of the square, rectangle, isosceles right triangle, equilateral triangle, circle 
and sphere were evaluated numerically or by suitable analytical methods. The results 
were fitted as empirical polynomials of square and cube roots of the classical limit 
n of the partition function. The empirical relations were shown to hold over a wide 
range of 6. Their coefficients were compared with asymptotic expansions. 

1. Introduction 

The calculation of the partition function q of a particle in a box is usually based on 
the energy eigenvalues of a particle in a cube. The potential is given by zero inside 
the box and infinity on the boundary and on the rest of space. The summation over 
all states is approximated by an integration to  give the well known formula [l p 721 

where m, kB, T ,  h and V have their usual meanings. In equation (1) the dependence of 
qtrans on terms proportional to  the surface of the box and on higher terms is neglected. 
I t  can be also seen from (1) that rig does not depend on the shape of the box. 

In this paper the shape dependence of q for a particle moving in different boxes will 
be investigated. For some two- and three-dimensional potentials q will be evaluated 
either numerically or by appropriate summation techniques. The partition functions 
can be fitted to  empirical formulae which are closely related to  asymptotic expressions. 

2. Computation of the partition functions 

I t  is well known that  the energy eigenvalues of a particle of mass m moving in some 
two- and three-dimensional boxes can be expressed as simple explicit formulae. For 
convenience the eigenvalues are listed in the appendix. In the simplest cme t>he energies 
are of the form [ 2 ] :  

E,  = a n 2  n E W  & E R +  ( 2 )  
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and the partition function can be evaluated using the following expression 

which can be derived by the Euler Maclaurin sum formula [3 p 3031, by 0 transforma- 
tion [4 p 541 or by the Poisson sum formula [5 p 861. For 0 < IY < 0.2 the deviation 
6 is less than By straightforward application of (3) q can be obtained for the 
one-dimensional box ( q b ) ,  the rectangle (qrec t )  and the square (qsqua) .  The partition 
functions are listed in the appendix. 

Comparing the partition function qiso of a particle in an isosceles right triangle of 
small side a 

with qsquar it can be easily seen that 

Both qb and qsqua can be evaluated using (3). The partition functions for the equilat- 
eral triangle ( q e q u i )  , circle (qci,.) and sphere ( q s p h e )  were calculated numerically. 

For a general right cylinder with an arbitrary base B and the height H the partition 
function qc is given by 

where qH and qE are the partition functions of a particle in a one-dimensional box 
of length H and of the base B ,  respectively. By means of ( 6 )  qc can be obtained for 
every right cylinder with known qg. 

3. Empirical formulae for the partition function 

3.1. Derivation of the empirical formulae 

The numerical summations are fairly cumbersome, thus a simple empirical formula 
for the partition function would be valuable. As an example we consider a particle 
confined to  a rectangular two-dimensional box of sides a ,  b and of area A. We express 
the partition function qrect ( A l )  in terms of its classical limit n2. The ratio between 
a and b is denoted by y .  

qrect = “2 - f (&+ 5) f i+ 4 1 
(7) 

2mrkBT 
h2 

A.  Id2 = 
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Equation (7) has the functional form 

92 = n2 + g,&+ h2 (9) 

where q2 is the partition function of a particle in a two-dimensional box. The coefficient 
g2 depends on the shape of the rectangle. I conjecture that a functional form (9) also 
holds, at least by approximation, for other two-dimensional boxes with coefficients g2 
and h, depending only on the shape of the box. Equation (A2) is used to derive an 
expression such as (9) for piso. In order to check whether a similar formula also holds 
for qequi and qcir, g2 and h, are determined by a least-squares fit [6] of the numerical 
results for qequi and qcir. A typical output for qcir is shown in table 1. The coefficients 
and other details of the fits are given in table 2. With tc2 lying between 13 and 13 000, 
a maximal deviation of less than 2 x low3 between the fitted value and the exact 
numerical result is observed in the case of qcir. For qequi no deviation can be observed 
within the accuracy of our computer. This means that all two-dimensional potentials 
analysed in this paper obey, at least to a very good approximation, an expression of 
the form (9). In the case of potentials, the partition function of which can be evaluated 
by (B), equation (9) holds in the range for which (6) can be used. 

Table 1. Typical output for a least-squares fit of qcir .  M is the mass of the atom 
( U ) ,  A the area of the circle (lo-'' m2), T the temperature (K) ,  nz the value of the 
partition function for the asymptotic limit, q the exact partition function, qfit  the 
fitted value of the partition function, qasy,  asymptotic expansion for q from equation 
(22). g2 = -0.886 234(4) and hz = 0.1672(2) are the empirical coefficients for (9) 
obtained from this fit. (The figures in parentheses give the standard deviation.) 

M A T n2 9 9fir - 9 Qasy qasy - 9 

4.003 
4.003 
4.003 
4.003 
4.003 
4.003 
4.003 
4.003 
20.179 
20.179 
20.179 
20.179 
39.948 
39.948 
39.948 
39.948 
39.948 
39.948 

10.0 100 
10.0 200 
10.0 300 
20.0 400 
20.0 600 
20.0 1000 
30.0 1000 
70.0 900 
30.0 900 
40.0 1000 
70.0 1000 
90.0 1000 
40.0 100 
40.0 200 
60.0 1000 
70.0 1000 
90.0 900 
100.0 1000 

13.13 
26.26 
39.39 
105.05 
157.58 
262.63 
393.94 
827.27 
1787.43 
2648.04 
4634.08 
5958.10 
524.23 
1048.46 
7863.43 
9174.00 
10615.63 
13105.71 

10.0886 
21.8890 
33.9993 
96.1345 
146.6181 
248.4312 
376.5163 
801.9489 
1750.1286 
2602.6063 
4573.9146 
5889.8589 
504.1044 
1019.9279 
7785.0066 
9089.281 0 
10524.4831 
13004.4227 

-0.001 50 
-0.000 88 
-0.000 62 
-0.000 20 
-0.000 09 
0.000 02 
0.000 07 
0,000 12 
0.000 10 
0.000 07 

-0.000 02 
-0.000 07 
0.000 09 
0.000 12 

-0.000 15 
-0.000 19 
-0.000 23 
-0.000 25 

10.0865 
21.8876 
33.9982 
96.1338 
146.6175 
248.4307 
376.5160 
801.9487 
1750.1284 
2602.6061 
4573.9145 
5889.8589 
504.1040 
1019.9277 
7785.0065 
9089.2810 
10524.4830 
13004.4227 

-0.002 05 
-0.001 41 
-0.001 15 
-0.000 69 
-0.000 56 
-0.000 43 
-0.000 35 
-0.000 24 
-0.000 16 
-0.000 13 
-0.000 10 
-0.000 09 
-0.000 31 
-0.000 22 
-0.000 08 
-0.000 07 
-0.000 06 

0.000 01 

The partition function qrpep of a particle in a rectangular parallelepipedon of sides 
a ,  b and c can be expressed as a function of its classical limit tc3 (1) as follows: 

(10) 
213 + g  K113 

qrpep = ~3 + f 3 ~ 3  3 3 + h3 

h 3 = - i  b = y l a  c = y2a. 
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Table 2. Coefficients in the empirical equations. The standard deviation is given in 
parentheses. 

9 f 9 h Equation 

qequi - -1.139 753 528 477t 0.333 333 333 33t (9) 
qcir -0.886 234 l (4 )  0.167 23(2) (9) - 

gsphe -1.208 994 U27(8) 0.413 578(1) -0,021 22(3) (10) 

t No standard deviation observed. 

If an expression such as (9) holds for the base contribution qB to the partition 
function of a right cylinder with height H and an area of the base A ,  a formula similar 
to (10) can be derived using equations (1) and (6). 

where 

Coefficients f3, g3 and h, for a sphere were obtained by a least-squares fit of the 
numerical data of qsphe . In the fit with )c3 between 4 and 5400 000, a maximal 
deviation of 8 x 

The lower bound of the range of validity of (9) and (11) for qcir, qegui and qsphe 
was tested numerically. For I E ~ ( ~ )  2 1 the relative error in q was less than 1%, 0.005% 
and 2.5%, respectively. 

was observed. The results are listed in table 2. 

3.2. Asymptotic expansions of the partition function 

The coefficient g2 in (9) is related in a simple manner with the area A and the perimeter 
p of the potential 

Relation (12) holds exactly for all two-dimensional potentials considered in this paper 
except for qcirl for which it is fulfilled to a good approximation. We shall show that 
(12) is an asymptotic expansion of g2. 

The two-dimensional equation 

A u + A u = O  u = O o n d G  (13) 

is defined in a simply connected domain of area A .  The boundary 6G of perimeter p 
has smooth arcs of length Ci and corners of angle cui. For 

03 

W ( t )  = e-'"' A,: eigenvalues of (13) (14) 
n=l 

the following asymptotic expansion holds as t + +O [7 p 37,8]: 
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Table 3. Coefficients in the asymptotic expansions. The difference of the coefficients 
between the asymptotic and empirical equations is given in parentheses. 

P F G H 

-1.139 753 5284t 0.333 333 33t - Pequi 
Pcir - -0.886 227(7) 0.166 7(-5) 
qsphe -1.208 993 96(6) 0.413 567( -9) o.Oo(2)s 

t No deviation observed. 
$ H3 for the sphere is exactly zero. 

where 

1 
6(Cj) = 12.rr / k ( I )  dl k(l): curvature 

5 1  

and 

Comparing the Schrodinger equation of a particle in a box 

h2 
B A  m 

- ?A+ = E+ d = O o n d G  

with (13) and the partition function qz  

W 

n = l  

with (14) we obtain 

8A2mEn 
h2 

A, = 

and 

h2 
8T2mkBT' 

t =  

Substituting (20) and (21) into (15), we get the asymptotic expansion 

P Gz = -- 
4 a  

which is in agreement with (12). The constant terms H ,  

i 

were evaluated for the potentials considered here. They are compared with the results 
of the numerical fits in table 3. 
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The coefficient f3 in the expansion (11) of the partition function of a right cylinder 
with surface S and volume V can be simplified using (12) 

We now consider a three-dimensional equation (13) defined in a smooth convex do- 
main. For W ( t )  (14) the following asymptotic expansion holds as t -3 0 [9]: 

+ 1 /l(ICI - I C , ) 2  d S  I C , ,  I C 2 :  principal curvatures. (25) 512n 

Using (20) and (21) the following asymptotic expression for q3 can be obtained: 

q3 x tc3 + F3(~3)2/3 + G3(tc3)’I3 + H3 (26) 

where 

F - _ -  - 4v213 S G3 = 12av113 1 //(ie1+IC2)dS H 3  = L / L ( k , - t , ) 2 d S .  512n 

For a spherical domain (26) reads: 

The constant term vanishes in expansion (27). The coefficients determined from the 
numerical results are compared with (27) in table 3. 

4. Conclusion 

The partition function of a particle moving two-dimensionally in a square, in a rectan- 
gle, in an isosceles right triangle, in an equilateral triangle, in a circle and in the three- 
dimensional potential of the corresponding right cylinders and in a sphere were calcu- 
lated either by numerical summation or by suitable analytical summation techniques. 
It was observed that for a particle moving in one of the two- or three-dimensional 
infinite hard wall cavities mentioned above, the partition function can be expressed 
to a very good approximation by a simple empirical formula. The empirical formulae 
were shown to have the same form as asymptotic expansions for the partition func- 
tion in the limit of T + CO. The parameters in the empirical formulae and in the 
asymptotic expressions differ only slightly. The empirical formulae allow a simple cal- 
culation of the partition function of a particle like He or H, moving in a small box at  
low temperatures, e.g. for an atom in a cavity in a liquid. 

The good agreement between the numerical results and the asymptotic expansions 
suggests the use of the expansions (15) and (25) for other two- and three-dimensional 
domains, if their eigenvalues cannot be calculated easily and if the boundaries are 
sufficiently regular. A detailed investigation on the relation between the shape of 
a box and the deviation between the asymptotic expansion and the exact partition 
function is under way. 
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Appendix 

The energies E ,  degeneracies g, and the partition functions q (if an analytical ex- 
pression exists) of a particle of mass m moving in boxes of various shapes are listed 
below. 

Rectangle of sides a and b (square analogous) [2]: 

Isosceles right triangle with a small side of a [2]: 

- 
Piso - h2 

Equilateral triangle of side a [8]:  

Circle of radius R, [7 p 371: 

where jn,s is the sth positive zero of the Bessel function J,(z) of the first kind, gn = 2 
for n E N and 1 for n = 0. For the calculation of qcir all about 125 000 j n , 8  of 1000 or 
below were used. 

Sphere of radius R, [IO p 961: 
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where ql 
500 000 h, of 2000 or less were used. 

is the 8th positive zero of J,+,lz ( E ) .  For the calculation of Qsphe all about 
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